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A Twofold Mission

Applied research to help government explore and
manage sensitive information

Tools to help people understand what information
IS released, and what needs to be protected



Contact 7S Declassification Engine

HISTORY LAB

Documents

History as Data Science

We turn documents into data and develop
tools to explore history.
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The Biggest Database of Declassified Documents

> The Foreign Relations of the United States (1945-1980). A curated collection of the
~80,000 most important declassified documents selected by State Department
historians with access to every government department and agency.

> The State Department Central Foreign Policy Files (1973-1978). 1.7 million State
Department Cables and metadata from ~500,000 more still classified cables and
documents delivered by diplomatic pouch.

> Henry Kissinger Telephone Conversations (1973-1976). 4.5 thousand transcripts
of Kissinger Telephone Conversations during his tenure as Secretary of State.

> The Hillary Clinton Emails (2009-2012). As of November release, 16,246 email
chains with a total of 40,737 individual messages

> Other Collections To Come: > President’s Daily Briefs
> FBI “Vault” of FOIA’ed documents
> NATO Archives
> Aramis (UK Foreign Office Cables 1992-2000)
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Our Focus: Tools to Manage Classification and Declassification Risks
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From documents to Formatted Data

UNCLASSIFIED U S Departmont of State Case No F-2014-20439 Doc No COS784931 Date 077212018

RELEASE W PART
Bs

From:
Sent:
To:
Subject:

e Orlginal Message ~—

From: N <HDR22@clintonemail com>

To: Abedin, Huma

Sent: Sun Aug 30 13:35:07 2009

Subject: Re: Turkey-Armenia text for Davutoghy call

- Original Message ——

From: Abedin, Huma <AbedinM@state gov>

To W

Sent: Sun Aug 30 13:32:43 2009

Subject: Re: Turkey-Armends text for Davutoghu cadl

—— Original Message —

From: H <HDR22 @cintonemail.com>

To: Abedin, Muma

Sent: Sun Aug 30 13:25:30 2009

Subject: Re: Turkey-Armenia text for Davutogiu call

- Original Message —

From: Abedin, Huma <AbedinH@state gov>
Toc W

Sent: Sun Aug 30 13:01:50 2009

Abedin, Huma <Abedink@state gov>
Sunday, August 30, 2006 1:38 PM
L]

Re: Turkey-Armenia text for Davitoghu call
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ldentifying features




Used Fields Description
origclass The original class of the cable (the classification target)
body Full text of the cable
subject Keywords of subjects dealt with in the document.
concepts Concepts attributed to the document
TAGS Traffic Analysis by Geography and Subject
from Who/where sent the document.
to Who/where received the document.
office Which State Department office or bureau sent the document.

date

Document creation date




Situation Total in Database Unclassified Limited Official | Confidential Secret
Use

declassified 1.758.279 876.797 411.973 375.690 03.635
cables
Error 119.744 53.935 21.744 25.233 18.832
messages for
body
blank body 8282 2.726 1.645 1.924 1.987
blank or n/a 634.967 445.300 114.507 65.502 9.658
concepts
blank or n/a 26.109 16.490 5.820 2.914 885
subject
blank or n/a 17 7 6 3 1
from
blank or n/a 9.740 6.027 1.572 1.698 443
to
Used for 981.083 368.043 280.251 270.477 62.312

classifier




Feature Engineering

« Hyphenation was eliminated from textual fields, as there were garbage from the original printed versions that were
scraped from the web;

« Compound names of places in textual fields were aggregated, enabling them to be treated as a single token (i. e.
NEW YORK was transformed to NEWYORK). They were present in all textual features, but that step was specially
important in the case of the from and to fields, which represent the names of the embassies. These fields were
aggregated under a new field embassy, for the vectorization process;

» Tokenization was made and all the trailing punctuation and words with length of 1 were eliminated. Underscores and
hyphens in the middle of words were maintained,

»  Stopwords were removed, using NLTK english stopwords list;

« Tests were made using stemmed forms of words, but it didn’t enhance the performance and the stemming was
discarded.

» The field date was transformed in a boolean field weekday - indicating whether the date fell in a weekend or not; and
another field year+month, used to test hypothesis on the temporal series of cables regarding to classification
windows. That doesn’t prove useful, though, for the whole span, although could be promising for small periods of
time.

« The fields body, subject, concepts, tags, embassy and office were added altogether in a new field/feature all_text,
which was tested as an alternative to combining all the other features by concatenating those vectors, with very
similar results.



Bags of words

* Tokenize ¢ Remove stop words e Lemmatize ¢ Compute weights
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http://pt.slideshare.net/mgrcar/text-and-text-stream-mining-tutorial-15137759



We have tested
many alternate
weighting schemes,
as TfIDf
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Classification in Al can be seem as analogous to “learning good decision
boundaries” that separate the examples belonging to diferente classes in the
data set

Decision boundary

12,T,T,T/

101

8

Tan, Steinbach, Kumar, Eick: NN-Classifiers and Support Vector Machines



scikit-learn
algorithm cheat-sheet

classification

get
more
data NO
NO
>50
YES samples
= | <100K
samples .
predicting a
Category

YES

regression

YES

NO,

<100K e
samples

number of
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known

clustering
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WORKING
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Algorithms

Linear Models Decision Trees
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relevant elements

Predicted condition | ,
Total population Predicted Condition positive Predicted Condition negative false negatives true negatives
condition s False Negative ® o ® O (o)
i True positive ol aroe
True sl (Type Il error)
condition condition False Positive )
§ True negative
negative (Type | error)
true positives false positives
Positive predictive value (PPV), Precision False omission rate (FOR)
= _ 2 True posttive _ __ L False negative _
Accuracy (ACC) = ™ T Test outcome postfive 2 Test outcome negative
¥ True positive + ¥ True negative : , o
e % e False discovery rate (FDR) Negative predictive value (NPV)
X Total population 5 .
_ YFale positive _ X True negative
~ I Test outcome posttive ~ I Test outcome negative

selected elements

[{relevant documents} N {retrieved documents}|

11 — How many selected How many relevan
e |{relevant documents}| o are leveat? o areseocied?
» [{relevant documents} M {retrieved documents}| e B e
precision =

|{retrieved documents}|
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Very ordinary results at first... ~0.75

» Simple classifiers
« Scarce feature engineering
* Few data cleansing
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AdaBoost

Classifier

Strong Strong Strong
Classifierl Classifier2 ClassifierN

Weak . Wéak Weak
Classifierll Classifier21 ClassifierN1

_ = ~ = =
Weak Weak Weak
Classifierl2 | Classifier22 ClassifierN2
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Classifier

ROC/AUC Score

Accuracy Score

Precision
(class 0/1)

Recall
(class 0/1)

fl1-score
(class 0/1)

Stochastic Gradient Descent

0.8462/
0.8338

0.8576/
0.8512

(0.82/0.88)/
(0.83/0.86)

(0.80/0.89)/
(0.76/0.90)

(0.81/0.89)/
(0.79/0.88)

Logistic Regression

0.8457/
0.8434

0.8569/
0.8574

(0.81/0.88)/
(0.82/0.88)

(0.80/0.89)/
(0.79/0.90)

(0.81/0.89)/
(0.81/0.89)

Linear SVM*

0.8454/
0.8452

0.8563/
0.8583

(0.81/0.88)/
(0.82/0.88)

(0.80/0.89)/
(0.79/0.90)

(0.81/0.89)/
(0.81/0.89)

Ridge

0.8261/
0.8373

0.8448/
0.8546

(0.82/0.86)/
(0.83/0.87)

(0.75/0.90)/
(0.77/0.91)

(0.78/0.88)/
(0.80/0.89)

Bagging (w/ Dec. Tree)

0.8048/
0.8049

0.8172/
0.8173

(0.76/0.85)/
(0.76/0.85)

(0.76/0.85)/
(0.76/0.85)

(0.76/0.85)/
(0.76/0.85)

Extremely Randomized Trees

0.8036/
0.7938

0.8365/
0.83

(0.86/0.83)/
(0.86/0.82)

(0.67/0.94)/
(0.65/0.94)

(0.76/0.88)/
(0.74/0.87)

AdaBoost (w/ Random F.)

0.8031/
0.8072

0.8190/
0.8222

(0.77/0.85)/
(0.77/0.85)

(0.74/0.87)/
(0.75/0.87)

(0.75/0.86)/
(0.76/0.86)

Random Forest

0.7964/
0.7994

0.8310/
0.8316

(0.86/0.82)/
(0.85/0.82)

(0.66/0.94)/
(0.67/0.93)

(0.74/0.87)/
(0.75/0.87)

Perceptron*

0.7856/
0.7963

0.8138/
0.8112

(0.80/0.82)/
(0.75/0.84)

(0.67/0.90)/
(0.74/0.86)

(0.73/0.86)/
(0.75/0.85)

Passive Aggressive*

0.7745/
0.8226

0.8095/
0.837

(0.82/0.81)/
(0.79/0.86)

(0.63/0.91)/
(0.76/0.88)

(0.71/0.86)/
(0.78/0.87)

Multinomial Naive Bayes

0.7735/
0.7828

0.7614/
0.7992

(0.64/0.87)/
(0.74/0.83)

(0.82/0.73)/
(0.72/0.85)

(0.72/0.79)/
(0.73/0.84)

Bernoulli Naive Bayes

0.6885/
0.6885

0.6538/
0.6538

(0.52/0.84)/
(0.52/0.84)

(0.83/0.55)/
(0.83/0.55)

(0.64/0.66)/
(0.64/0.66)




Feature Class Combination ROC/AUC Score | Accuracy Score Precision Recall Average fl-score
(class 0/1) (class 0/1)
Subject (UvsL,C,S) 0.79 0.82 0.81/0.82 0.68/0.91 0.74/0.86
(ULvsC,S) 0.80 0.83 0.85/0.77 0.89/0.72 0.87/0.74
(UL,CvsS) 0.70 0.96 0.99/0.80 0.99/0.40 0.98/0.53
Concepts (UvsL,C,S) 0.72 0.75 0.69/0.77 0.59/0.84 0.63/0.81
(U,Lvs C,S) 0.74 0.78 0.80/0.74 0.89/0.58 0.84/0.65
(UL,Cvs S) 0.68 0.91 0.96/0.75 0.99/0.36 0.97/0.48
Body (UvsL,C,S) 0.83 0.84 0.79/0.87 0.78/0.88 0.79/0.87
(ULvs C,S) 0.81 0.84 0.85/0.82 0.92/0.70 0.88/0.75
(UL,Cvs S) 0.68 0.95 0.96/0.76 0.99/0.36 0.98/0.49
TAGS (UvsL,C,S) 0.74 0.78 0.75/0.79 0.61/0.88 0.67/0.83
(ULvs C,S) 0.75 0.79 0.82/0.72 0.87/0.63 0.84/0.67
(UL,CvsS) 0.62 0.95 0.95/0.73 0.99/0.25 0.97/0.38
Embassies (From/To) |(UvsL,C,S) 0.57 0.67 0.71/0.66 0.19/0.95 0.30/0.78
(ULvsC,S) 0.59 0.69 0.70/0.65 0.93/0.24 0.80/0.35
(U,L,Cvs S) 0.57 0.94 0.94/0.72 1.00/0.14 0.97/0.24
Office (UvsL,C,S) 0.67 0.73 0.76/0.72 0.42/0.92 0.54/0.81
(ULvsC,S) 0.62 0.73 0.71/0.83 0.97/0.27 0.82/0.41
(UL,CvsS) 0.62 0.95 0.95/0.79 1.00/0.25 0.97/0.38
All_Text (UvsL,C,S) 0.85 0.86 0.82/0.88 0.81/0.89 0.81/0.89
(ULvsC,S) 0.84 0.87 0.88/0.84 0.92/0.76 0.90/0.80
(UL,Cvs S) 0.78 0.92 0.97/0.78 0.99/0.57 0.98/0.66
All Features (UvsL,C,S) 0.86 0.87 0.83/0.89 0.81/0.90 0.82/0.90
(independent vectors) |y L vs C,S) 0.85 0.87 0.88/0.84 0.92/0.78 0.90/0.81
(UL,Cvs S) 0.81 0.97 0.97/0.80 0.99/0.61 0.98/0.69
(Uvs C. S) 0.93 0.93 0.93/0.93 0.94/0.92 0.93/0.93



Precision
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Enriching feature-set with semantic vectors

A extended feature-set including features derived from word2vec Analysis, can
improve the preformance of the classifier.

Semantic feature vectors:

3 — Ei tfidf‘u.'{,d X ﬁ
)i tfidfuw, a




Exploring Temporal Evolution

Experiment 1:

Split up cable collection
if chunks of 5K cables

Randomize the order

Run a batch training on
this set of batches
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- Sort cables in ascending "

« Split the collection in 5K

* Train the classifier on

Exploring Temporal Evolution

Experiment 2:

dates

chunks

these chunks from the
older ones to the newer.
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Next Steps

Analyze Brazilian and US political reverberations, exploring
FGV CPDOC archives diplomatic documents;

Analyze temporal issues regarding cables

Dig deeper in the misclassified cables, and identify the
misleading features (or the main sources of human errors)
|dentify documents’ authorship using ML techniques;

Build better interfaces for computer aided human
classification tasks.



